Noetherianity and homological finiteness of polynomial functors (II)

Aurélien DJAMENT

CNRS, LAGA, Villetaneuse, France

November 2023

Second talk of a mini-course to Vietnam Institute for Advanced Study in Mathematics (VIASM), in the framework of the program *Algebraic Topology Activity 2023*.

After recent work with Antoine Touzé to appear in *Tunisian Journal of Mathematics*.

Cross-effects

In this whole talk, A denotes an essentially small additive category, \mathcal{E} an abelian category, R a ring and k a commutative ring. We are especially interested with the case A = P(R) (finitely generated projective left *R*-modules) and $\mathcal{E} = k$ -Mod.

Definition (Eilenberg-MacLane)

Let $F : A \to \mathcal{E}$ be a functor and $d \ge 0$ an integer. One defines the *d*-th cross-effect of F as the functor $cr_d(F) : \mathcal{A}^d \to \mathcal{E}$ given by

$$cr_d(F)(a_1,\ldots,a_d) = \operatorname{Ker}\left(F\left(\bigoplus_{i=1}^d a_i\right) \to \bigoplus_{i=1}^d \left(F\left(\bigoplus_{j\neq i}a_j\right)\right)\right)$$

where morphisms are induced by the canonical projections

$$\bigoplus_{i=1}^d a_i \twoheadrightarrow \bigoplus_{j\neq i} a_j.$$

Ordinary polynomial functors (à la Eilenberg-MacLane)

One has a natural splitting

$$F\left(\bigoplus_{i=1}^{d} a_i\right) \simeq \bigoplus_{1 \leq i_1 < \cdots < i_r \leq n} cr_r(F)(a_{i_1}, \ldots, a_{i_r}).$$

So, the functor cr_d : $Fun(\mathcal{A}, \mathcal{E}) \rightarrow Fun(\mathcal{A}^d, \mathcal{E})$ is a *direct summand* of precomposition by the *d*-th iterated direct sum $\mathcal{A}^d \rightarrow \mathcal{A}$, and in particular, cr_d commutes to limits and colimits (so, it is exact).

Definition (Eilenberg-MacLane)

A functor $F : \mathcal{A} \to \mathcal{E}$ is *polynomial* of degree at most d if $cr_{d+1}(F) = 0$. We denote by $\mathcal{P}ol_d(\mathcal{A}, \mathcal{E})$ the full subcategory of $\mathbf{Fun}(\mathcal{A}, \mathcal{E})$ on these functors.

(It is easy to check that, for $\mathcal{A} = \mathbf{P}(R)$, this definition is equivalent to the one given in the first talk.)

The following property can be easily deduced from the natural splitting of the previous slide.

Proposition

For each $d \in \mathbb{N}$, the evaluation functor on \mathbb{R}^d induces an exact and faithful functor $\mathcal{P}ol_d(\mathbf{P}(\mathbb{R}), \mathcal{E}) \to \mathcal{E}$.

So, if F belongs to $\mathcal{P}ol_d(\mathbf{P}(R), \mathcal{E})$, the lattice of subfunctors of F is a sub-ordered set of the lattice of subfunctors of $F(R^d)$ in \mathcal{E} , whence:

Corollary

If $F : \mathbf{P}(R) \to \mathcal{E}$ is a polynomial functor whose values are noetherian (resp. artinian, finite) in \mathcal{E} , then F is noetherian (resp. artinian, finite) in $\mathbf{Fun}(\mathbf{P}(R), \mathcal{E})$

э

If the ring R is finite, each finitely-generated functor (not assumed to be polynomial) of $\mathcal{F}(R, k)$ has values in finitely-generated k-modules, so :

Corollary

Si R is a finite ring and k is a field, then each polynomial functor of $\mathcal{F}(R, k)$ is locally finite.

If the underlying additive group of R is finitely-generated, each finitely-generated polynomial functor of $\mathcal{F}(R, k)$ has values in finitely-generated k-modules, whence:

Corollary

If the underlying additive group of R is finitely-generated and if the ring k is artinian (resp. noetherian), then each polynomial functor of $\mathcal{F}(R, k)$ is locally finite (resp. locally noetherian).

э

As functors cr_n commute with limits and colimits, the subcategories $\mathcal{P}ol_d(\mathcal{A}, \mathcal{E})$ are *bilocalising* in **Fun** $(\mathcal{A}, \mathcal{E})$ (at least if \mathcal{E} is a Grothendieck category). One can look at the abelian quotient categories $\mathcal{P}ol_d(\mathcal{A}, \mathcal{E})/\mathcal{P}ol_{d-1}(\mathcal{A}, \mathcal{E})$. Pirashvili described in the late 1980's these categories.

For F in $\mathcal{P}ol_d(\mathcal{A}, \mathcal{E})$, the multifunctor $cr_d(F) : \mathcal{A}^d \to \mathcal{E}$ is additive with respect to each of its d entries. Moreover, it is endowed, for each permutation $\sigma \in \mathfrak{S}_d$, with natural isomorphisms

$$cr_d(F)(a_{\sigma(1)},\ldots,a_{\sigma(d)})\simeq cr_d(F)(a_1,\ldots,a_d)$$

compatible in a suitable sense with composition of permutations. One says that $cr_d(F)$ is a symmetric *d*-multifunctor on \mathcal{A} (with values in \mathcal{E}).

We denote by $\operatorname{Add}_d(\mathcal{A}, \mathcal{E})$ the category of multifunctors $\mathcal{A}^d \to \mathcal{E}$ which are additive with respect to each entry (it is a full subcategory of $\operatorname{Fun}(\mathcal{A}^d, \mathcal{E})$), and by $\Sigma \operatorname{Add}_d(\mathcal{A}, \mathcal{E})$ the category of symmetric multifunctors of $\operatorname{Add}_d(\mathcal{A}, \mathcal{E})$. Morphisms in $\Sigma \operatorname{Add}_d(\mathcal{A}, \mathcal{E})$ are natural transformations that commute with symmetry isomorphisms (which are part of the structure). So, cr_d induces an exact functor $\mathcal{P}ol_d(\mathcal{A}, \mathcal{E}) \to \Sigma \operatorname{Add}_d(\mathcal{A}, \mathcal{E})$. Its kernel is by definition $\mathcal{P}ol_{d-1}(\mathcal{A}, \mathcal{E})$, so it induces an exact and faithful functor $\mathcal{P}ol_d(\mathcal{A}, \mathcal{E})/\mathcal{P}ol_{d-1}(\mathcal{A}, \mathcal{E}) \to \Sigma \operatorname{Add}_d(\mathcal{A}, \mathcal{E})$.

Theorem (Pirashvili)

The functor cr_d induces an equivalence of categories

$$\mathcal{P}\textit{ol}_d(\mathcal{A},\mathcal{E})/\mathcal{P}\textit{ol}_{d-1}(\mathcal{A},\mathcal{E}) \xrightarrow{\simeq} \Sigma \mathbf{Add}_d(\mathcal{A},\mathcal{E}).$$

The category $\mathbf{Add}_d(\mathbf{P}(R), k\text{-}\mathbf{Mod})$ is equivalent to $(k \otimes (R^{\mathrm{op}})^{\otimes d})\text{-}\mathbf{Mod}$, where tensor products are taken ove \mathbb{Z} .

In general, if a group G acts on a commutative ring K, let us denote by $K \rtimes G$ the *twisted group algebra* of G over K: its underlying K-module is the same as the usual group algebra K[G], and multiplication is given by

$$(\lambda[g]).(\mu[h]) = (\lambda(g_*\mu))[gh]$$

(for $(\lambda, \mu, g, h) \in K \times K \times G \times G$).

Then

$$\Sigma \operatorname{\mathsf{Add}}_d(\operatorname{\mathsf{P}}(R),k\operatorname{\mathsf{-Mod}})\simeq (k\otimes (R^{\operatorname{op}})^{\otimes d})\rtimes \mathfrak{S}_d\operatorname{\mathsf{-Mod}},$$

where \mathfrak{S}_d acts on $k \otimes (R^{\mathrm{op}})^{\otimes d}$ by permuting factors of the tensor product.

The functor $cr_d : \operatorname{Fun}(\mathcal{A}, \mathcal{E}) \to \operatorname{Fun}(\mathcal{A}^d, \mathcal{E})$ takes values in the full subcategory $\operatorname{Fun}^{d-\operatorname{red}}(\mathcal{A}^d, \mathcal{E})$ on *d-reduced* multifunctors, meaning that is it zero on each *d*-tuple of objects of \mathcal{A} whose at least one component is zero.

Proposition (sum/diagonal adjunction)

The functor $\operatorname{Fun}(\mathcal{A}, \mathcal{E}) \to \operatorname{Fun}^{d-\operatorname{red}}(\mathcal{A}^d, \mathcal{E})$ induced by cr_d is adjoint on both sides to restriction to $\operatorname{Fun}^{d-\operatorname{red}}(\mathcal{A}^d, \mathcal{E})$ of precomposition δ_d^* by d-iterated diagonal $\delta_d : \mathcal{A} \to \mathcal{A}^d$. This adjunction restricts to the functor $\operatorname{Pol}_d(\mathcal{A}, \mathcal{E}) \to \operatorname{Add}_d(\mathcal{A}, \mathcal{E})$ induced by cr_d , which is adjoint on both sides to the functor $\Delta_d : \operatorname{Add}_d(\mathcal{A}, \mathcal{E}) \to \operatorname{Pol}_d(\mathcal{A}, \mathcal{E})$ induced by δ_d^* . If X is an object of $\Sigma \operatorname{Add}_d(\mathcal{A}, \mathcal{E})$, the symmetric structure on X induces an action of the group \mathfrak{S}_d on the functor $\Delta_d(X)$ of $\mathcal{P}ol_d(\mathcal{A}, \mathcal{E})$.

Proposition

The functor $\mathcal{P}ol_d(\mathcal{A}, \mathcal{E}) \to \Sigma \mathbf{Add}_d(\mathcal{A}, \mathcal{E})$ induced by cr_d is left adjoint to the functor

$$\Sigma \operatorname{\mathsf{Add}}_d(\mathcal{A},\mathcal{E}) o \mathcal{P}\mathit{ol}_d(\mathcal{A},\mathcal{E}) \qquad X\mapsto \Delta_d(X)^{\mathfrak{S}_d}$$

(invariants under the action of \mathfrak{S}_d).

If *F* is a functor of $\mathcal{P}ol_d(\mathcal{A}, \mathcal{E})$, one checks easily that the kernel and the cokernel of the unit of the adjunction $F \to \Delta_d cr_d(F)^{\mathfrak{S}_d}$ belong to $\mathcal{P}ol_{d-1}(\mathcal{A}, \mathcal{E})$. As a consequence, the functor $(\Delta_d cr_d)^{\mathfrak{S}_d}$ induces identity on $\mathcal{P}ol_d(\mathcal{A}, \mathcal{E})/\mathcal{P}ol_{d-1}(\mathcal{A}, \mathcal{E})$. On checks also that the composite functor $cr_d(\Delta_d^{\mathfrak{S}_d})$ is isomorphic to the identity of $\Sigma \mathbf{Add}_d(\mathcal{A}, \mathcal{E})$.

э

If V is a k-module, one defines the algebra of *divided powers* of V over k, denoted by $\Gamma_k^*(V)$, as the associative, commutative and unital k-algebra generated by elements $v^{[n]}$ for $v \in V$ and $n \in \mathbb{N}$ with the following relations:

•
$$orall v \in V, \qquad v^{[0]} = 1$$
 ;

•
$$\forall (\lambda, \nu, n) \in k \times V \times \mathbb{N}, \qquad (\lambda \nu)^{[n]} = \lambda^n . \nu^{[n]};$$

•
$$\forall (v, n, m) \in V \times \mathbb{N} \times \mathbb{N}, \qquad v^{[n]} \cdot v^{[m]} = \frac{(n+m)!}{n!m!} \cdot v^{[n+m]};$$

•
$$\forall (v, w, n) \in V \times V \times \mathbb{N}, \quad (v + w)^{[n]} = \sum_{i+j=n} v^{[i]} . w^{[j]}$$

This algebra is graded by $\deg(v^{[n]}) := n$. One denotes by $\Gamma_k^d(V)$ the *d*-th homogeneous component of the graded algebra $\Gamma_k^*(V)$. One defines so an endofunctor Γ_k^d of *k*-modules called *d*-th divided power.

The functor Γ_k^d is polynomial of degree *d*. It preserves surjective morphisms and filtered colimits, and one has a natural *k*-linear morphism $\Gamma_k^d(V) \to (V^{\otimes d})^{\mathfrak{S}_d}$ which is an isomorphism if *V* is a *flat* module.

The functor Γ_k^d is compatible base-change of the ring k in the following sense: if $k \to K$ is a ring morphism, with K commutative, one has a K-linear isomorphism $\Gamma_K^d(K \otimes_k V) \simeq K \otimes_k \Gamma_k^d(V)$, natural in the k-module V.

The functor Γ_k^d has a canonical structure of symmetric monoidal endofunctor of the symmetric monoidal category $(k-\mathbf{Mod}, \otimes, k)$. This allows to lift Γ_k^d as an endofunctor of k-algebras.

Strict polynomial functors (à la Friedlander-Suslin)

If \mathcal{A} is a k-linear category, one defines a k-linear category $\Gamma_k^d \mathcal{A}$ with the same objects as \mathcal{A} and with morphisms given by $(\Gamma_k^d \mathcal{A})(a, b) := \Gamma_k^d(\mathcal{A}(a, b))$ and composition by

 $\Gamma^d_k(\mathcal{A}(a,b))\otimes_k\Gamma^d_k(\mathcal{A}(b,c))\to \Gamma^d_k(\mathcal{A}(a,b)\otimes_k\mathcal{A}(b,c))\to \Gamma^d_k(\mathcal{A}(a,c))$

where the first map is induced by the monoidal structure of Γ_k^d and the seconde one is induced by composition in \mathcal{A} .

Definition

Let \mathcal{A} a small k-linear additive category, \mathcal{E} be a k-linear abelian category and $d \in \mathbb{N}$. We denote by $\mathcal{P}_{d;k}(\mathcal{A}, \mathcal{E})$ the category $\mathbf{Add}_k(\Gamma_k^d(\mathcal{A}), \mathcal{E})$ of k-linear functors $\Gamma_k^d(\mathcal{A}) \to \mathcal{E}$. Its objects are called homogeneous strict polynomial functors of degree d over k from \mathcal{A} to \mathcal{E} . One writes $\mathcal{P}_{d;k}(\mathcal{A}; k)$ for $\mathcal{P}_{d;k}(\mathcal{A}, k\text{-}\mathbf{Mod})$; when R and S are k-algebras, one writes $\mathcal{P}_{d;k}(R, S)$ for $\mathcal{P}_{d;k}(\mathbf{P}(R), S\text{-}\mathbf{Mod})$.

This notion was introduced, in the case of $\mathcal{P}_{d;k}(k,k)$, by Friedlander and Suslin (*Inventiones* 1997). It is related to representations of *algebraic* linear groups.

There is a canonical k-linear morphism $k[V] \to \Gamma_k^d(V) \quad v \mapsto v^{[d]}$ (natural in a k-module V). It is compatible with symmetric monoidal structures of functors k[-] and Γ_k^d . As a consequence, if \mathcal{A} is a k-linear category, one gets a k-linear functor $k[\mathcal{A}] \to \Gamma_k^d(\mathcal{A})$ which is identity on objects.

Let us now assume that \mathcal{A} is *k*-linear, additive and small. The functor $\mathcal{P}_{d;k}(\mathcal{A}, \mathcal{E}) \to \mathbf{Fun}(\mathcal{A}, \mathcal{E})$ (where \mathcal{E} is a *k*-linear abelian category) obtained by precomposition by the previous functor takes values in $\mathcal{P}ol_d(\mathcal{A}, \mathcal{E})$.

So, one gets a functor $i_d : \mathcal{P}_{d;k}(\mathcal{A}, \mathcal{E}) \to \mathcal{P}ol_d(\mathcal{A}, \mathcal{E})$ which is exact (it commutes even with all limits and colimits) and faithful. It is nevertheless generally not full.

Proposition

A functor F of $\mathcal{P}_{d;k}(\mathcal{A}, \mathcal{E})$ is finitely generated if and only if the functor $i_d(F)$ of $\mathcal{P}ol_d(\mathcal{A}, \mathcal{E})$ is finitely generated.

Let us now assume that $k = \mathbb{Z}$. The natural morphism $\Gamma^d_{\mathbb{Z}}(V) \to V^{\otimes d}$ induces an additive functor $\Gamma^d_{\mathbb{Z}}(\mathcal{A}) \to \mathcal{A}^{\otimes d}$ (the tensor product of two preadditive categories \mathcal{A} and \mathcal{B} is the preadditive category $\mathcal{A} \otimes \mathcal{B}$ such that $Ob(\mathcal{A} \otimes \mathcal{B}) = Ob(\mathcal{A}) \times Ob(\mathcal{B})$ and $(\mathcal{A} \otimes \mathcal{B})((a, b), (a', b')) = \mathcal{A}(a, a') \otimes \mathcal{B}(b, b'))$. By precomposition, we get an exact and faithful functor

$$\mathsf{Add}_d(\mathcal{A},\mathcal{E})\simeq\mathsf{Add}(\mathcal{A}^{\otimes d},\mathcal{E})
ightarrow\mathcal{P}_{d;\mathbb{Z}}(\mathcal{A},\mathcal{E})$$

whence, by precomposing with the forgetful functor, a functor

$$ilde{\Delta}_d: \Sigma \operatorname{\mathsf{Add}}_d(\mathcal{A}, \mathcal{E}) o \operatorname{\mathsf{Add}}_d(\mathcal{A}, \mathcal{E}) o \mathcal{P}_{d;\mathbb{Z}}(\mathcal{A}, \mathcal{E})$$

such that $\Delta_d \simeq i_d \circ \tilde{\Delta}_d : \Sigma \operatorname{\mathsf{Add}}_d(\mathcal{A}, \mathcal{E}) \to \operatorname{\mathcal{P}ol}_d(\mathcal{A}, \mathcal{E}).$

The following result is a consequence of Gabriel-Popescu Theorem.

Proposition

Let R and S be k-algebras and $n \ge d \ge 0$ be integers. The evaluation functor on \mathbb{R}^n induces a k-linear equivalence of categories

 $\mathcal{P}_{d;k}(R,S) \xrightarrow{\simeq} (\Gamma^d_k(\mathcal{M}_n(R)) \otimes_k S)$ -Mod.

Algebras $\Gamma_k^d(\mathcal{M}_n(R))$ are generalisations of classical Schur algebras.

(One can also prove, from Gabriel-Popescu, that the category $\mathcal{P}ol_d(\mathbf{P}(R), S)$ is equivalent to module category, but over a ring which is not very tractable.)

Theorem (Noether)

Let k be a commutative noetherian ring, A a finitely-generated commutative k-algebra and G a finite group acting on A (by k-algebra automorphisms). Then the algebra A^G of invariants is a finitely-generated k-algebra (in particuliar, it is noetherian).

By applying this result to a square-zero extension, one obtains:

Corollary

Under the previous assumptions, if V is a finitely-generated A-module endowed with an action of G such that $g_*(a.v) = (g_*a).(g_*v)$ for all $(g, a, v) \in G \times A \times V$, then V^G is a finitely-generated A^G -module.

Theorem (D.-Touzé)

Let k be a commutative noetherian ring and R a commutative k-algebra which is essentially finitely-generated (i.e. a localisation of a finitely-generated commutative k-algebra). Then for each $d \in \mathbb{N}$, the category of strict polynomial functors $\mathcal{P}_{d;k}(R,k)$ is locally noetherian.

One can also replace R by a (non-commutative) *finite* (i.e. finitely generated as a module) algebra over a commutative essentially finitely-generated k-algebra (with the same proof).

- **()** It is the same to prove that the k-algebra $\Gamma_k^d(\mathcal{M}_d(R))$ is noetherian.
- It is enough to prove the result when R is a finitely-generated k-algebra. (Everything commutes with localisation, and a localisation of a noetherian ring is noetherian.)
- It is enough to prove the result when R is a finitely-generated flat k-algebra. In fact, any finitely-generated k-algebra is a quotient of a polynomial algebra k[x₁,...,x_n], which k-flat, Γ^d_k preserves surjective morphisms, and any quotient of a noetherian ring is noetherian.

 $R^{\otimes d}$ is a finitely-generated k-algebra, and $V := (\mathcal{M}_d(R))^{\otimes d}$ is a finitely-generated $R^{\otimes d}$ -module. The group \mathfrak{S}_d acts on $R^{\otimes d}$ and V (is a compatible way), so that Noether Theorem implies that $(R^{\otimes d})^{\mathfrak{S}_d}$ is a finitely-generated k-algebra (so is noetherian), and that $V^{\mathfrak{S}_d}$ is a finitely-generated $(R^{\otimes d})^{\mathfrak{S}_d}$ -module.

As the k-modules R and $\mathcal{M}_d(R)$ are flat, $\Gamma_k^d(R) \simeq (R^{\otimes d})^{\mathfrak{S}_d}$ and $\Gamma_k^d(\mathcal{M}_d(R)) \simeq V^{\mathfrak{S}_d}$. So, $\Gamma_k^d(\mathcal{M}_d(R))$ is a finite algebra over a finitely-generated k-algebra, implying that it is noetherian.

Thank you for your attention!

Cảm ơn

Aurélien DJAMENT Noetherianity and homological finiteness of functors

Ξ.

Image: A matrix and a matrix